Sufficient Canonical Correlation Analysis

Canonical correlation analysis (CCA) is an effective way to find two appropriate subspaces in which Pearson's correlation coefficients are maximized between projected random vectors. Due to its well-established theoretical support and relatively efficient computation, CCA is widely used as a jo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 6 vom: 01. Juni, Seite 2610-2619
1. Verfasser: Guo, Yiwen (VerfasserIn)
Weitere Verfasser: Ding, Xiaoqing, Liu, Changsong, Xue, Jing-Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259334367
003 DE-627
005 20231224190955.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2551374  |2 doi 
028 5 2 |a pubmed24n0864.xml 
035 |a (DE-627)NLM259334367 
035 |a (NLM)27071172 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yiwen  |e verfasserin  |4 aut 
245 1 0 |a Sufficient Canonical Correlation Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2017 
500 |a Date Revised 19.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Canonical correlation analysis (CCA) is an effective way to find two appropriate subspaces in which Pearson's correlation coefficients are maximized between projected random vectors. Due to its well-established theoretical support and relatively efficient computation, CCA is widely used as a joint dimension reduction tool and has been successfully applied to many image processing and computer vision tasks. However, as reported, the traditional CCA suffers from overfitting in many practical cases. In this paper, we propose sufficient CCA (S-CCA) to relieve CCA's overfitting problem, which is inspired by the theory of sufficient dimension reduction. The effectiveness of S-CCA is verified both theoretically and experimentally. Experimental results also demonstrate that our S-CCA outperforms some of CCA's popular extensions during the prediction phase, especially when severe overfitting occurs 
650 4 |a Journal Article 
700 1 |a Ding, Xiaoqing  |e verfasserin  |4 aut 
700 1 |a Liu, Changsong  |e verfasserin  |4 aut 
700 1 |a Xue, Jing-Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 6 vom: 01. Juni, Seite 2610-2619  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:6  |g day:01  |g month:06  |g pages:2610-2619 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2551374  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 6  |b 01  |c 06  |h 2610-2619