$L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond

We propose a simple yet effective L0-regularized prior based on intensity and gradient for text image deblurring. The proposed image prior is based on distinctive properties of text images, with which we develop an efficient optimization algorithm to generate reliable intermediate results for kernel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 2 vom: 01. Feb., Seite 342-355
1. Verfasser: Pan, Jinshan (VerfasserIn)
Weitere Verfasser: Hu, Zhe, Su, Zhixun, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM25933426X
003 DE-627
005 20231224190955.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2551244  |2 doi 
028 5 2 |a pubmed24n0864.xml 
035 |a (DE-627)NLM25933426X 
035 |a (NLM)27071160 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
245 1 0 |a $L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.08.2018 
500 |a Date Revised 23.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a simple yet effective L0-regularized prior based on intensity and gradient for text image deblurring. The proposed image prior is based on distinctive properties of text images, with which we develop an efficient optimization algorithm to generate reliable intermediate results for kernel estimation. The proposed algorithm does not require any heuristic edge selection methods, which are critical to the state-of-the-art edge-based deblurring methods. We discuss the relationship with other edge-based deblurring methods and present how to select salient edges more principally. For the final latent image restoration step, we present an effective method to remove artifacts for better deblurred results. We show the proposed algorithm can be extended to deblur natural images with complex scenes and low illumination, as well as non-uniform deblurring. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art image deblurring methods 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Hu, Zhe  |e verfasserin  |4 aut 
700 1 |a Su, Zhixun  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 2 vom: 01. Feb., Seite 342-355  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:2  |g day:01  |g month:02  |g pages:342-355 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2551244  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 2  |b 01  |c 02  |h 342-355