Analysing Domain Shift Factors between Videos and Images for Object Detection

Object detection is one of the most important challenges in computer vision. Object detectors are usually trained on bounding-boxes from still images. Recently, video has been used as an alternative source of data. Yet, for a given test domain (image or video), the performance of the detector depend...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 11 vom: 01. Nov., Seite 2327-2334
1. Verfasser: Kalogeiton, Vicky (VerfasserIn)
Weitere Verfasser: Ferrari, Vittorio, Schmid, Cordelia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259334251
003 DE-627
005 20231224190955.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0864.xml 
035 |a (DE-627)NLM259334251 
035 |a (NLM)27071159 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kalogeiton, Vicky  |e verfasserin  |4 aut 
245 1 0 |a Analysing Domain Shift Factors between Videos and Images for Object Detection 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2017 
500 |a Date Revised 06.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object detection is one of the most important challenges in computer vision. Object detectors are usually trained on bounding-boxes from still images. Recently, video has been used as an alternative source of data. Yet, for a given test domain (image or video), the performance of the detector depends on the domain it was trained on. In this paper, we examine the reasons behind this performance gap. We define and evaluate different domain shift factors: spatial location accuracy, appearance diversity, image quality and aspect distribution. We examine the impact of these factors by comparing performance before and after factoring them out. The results show that all four factors affect the performance of the detectors and their combined effect explains nearly the whole performance gap 
650 4 |a Journal Article 
700 1 |a Ferrari, Vittorio  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 11 vom: 01. Nov., Seite 2327-2334  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:11  |g day:01  |g month:11  |g pages:2327-2334 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 11  |b 01  |c 11  |h 2327-2334