A theoretical description of charge reorganization energies in molecular organic P-type semiconductors

© 2016 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 37(2016), 15 vom: 05. Juni, Seite 1335-44
1. Verfasser: Brückner, Charlotte (VerfasserIn)
Weitere Verfasser: Engels, Bernd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DFT benchmark IP-EOM-CCSD IP-tuning organic molecular semiconductors
Beschreibung
Zusammenfassung:© 2016 Wiley Periodicals, Inc.
Charge transport properties of materials composed of small organic molecules are important for numerous optoelectronic applications. A material's ability to transport charges is considerably influenced by the charge reorganization energies of the composing molecules. Hence, predictions about charge-transport properties of organic materials deserve reliable statements about these charge reorganization energies. However, using density functional theory which is mostly used for the predictions, the computed reorganization energies depend strongly on the chosen functional. To gain insight, a benchmark of various density functionals for the accurate calculation of charge reorganization energies is presented. A correlation between the charge reorganization energies and the ionization potentials is found which suggests applying IP-tuning to obtain reliable values for charge reorganization energies. According to benchmark investigations with IP-EOM-CCSD single-point calculations, the tuned functionals provide indeed more reliable charge reorganization energies. Among the standard functionals, ωB97X-D and SOGGA11X yield accurate charge reorganization energies in comparison with IP-EOM-CCSD values. © 2016 Wiley Periodicals, Inc
Beschreibung:Date Completed 06.07.2018
Date Revised 06.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24325