Speeding Up the Bilateral Filter : A Joint Acceleration Way

Computational complexity of the brute-force implementation of the bilateral filter (BF) depends on its filter kernel size. To achieve the constant-time BF whose complexity is irrelevant to the kernel size, many techniques have been proposed, such as 2D box filtering, dimension promotion, and shiftab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 6 vom: 04. Juni, Seite 2657-72
1. Verfasser: Dai, Longquan (VerfasserIn)
Weitere Verfasser: Yuan, Mengke, Zhang, Xiaopeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM259097721
003 DE-627
005 20231224190441.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0863.xml 
035 |a (DE-627)NLM259097721 
035 |a (NLM)27046901 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Longquan  |e verfasserin  |4 aut 
245 1 0 |a Speeding Up the Bilateral Filter  |b A Joint Acceleration Way 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2017 
500 |a Date Revised 19.05.2017 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Computational complexity of the brute-force implementation of the bilateral filter (BF) depends on its filter kernel size. To achieve the constant-time BF whose complexity is irrelevant to the kernel size, many techniques have been proposed, such as 2D box filtering, dimension promotion, and shiftability property. Although each of the above techniques suffers from accuracy and efficiency problems, previous algorithm designers were used to take only one of them to assemble fast implementations due to the hardness of combining them together. Hence, no joint exploitation of these techniques has been proposed to construct a new cutting edge implementation that solves these problems. Jointly employing five techniques: kernel truncation, best N-term approximation as well as previous 2D box filtering, dimension promotion, and shiftability property, we propose a unified framework to transform BF with arbitrary spatial and range kernels into a set of 3D box filters that can be computed in linear time. To the best of our knowledge, our algorithm is the first method that can integrate all these acceleration techniques and, therefore, can draw upon one another's strong point to overcome deficiencies. The strength of our method has been corroborated by several carefully designed experiments. In particular, the filtering accuracy is significantly improved without sacrificing the efficiency at running time 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yuan, Mengke  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 6 vom: 04. Juni, Seite 2657-72  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:6  |g day:04  |g month:06  |g pages:2657-72 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 6  |b 04  |c 06  |h 2657-72