Multi-Label Dictionary Learning for Image Annotation

Image annotation has attracted a lot of research interest, and multi-label learning is an effective technique for image annotation. How to effectively exploit the underlying correlation among labels is a crucial task for multi-label learning. Most existing multi-label learning methods exploit the la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 6 vom: 04. Juni, Seite 2712-2725
1. Verfasser: Xiao-Yuan Jing (VerfasserIn)
Weitere Verfasser: Fei Wu, Zhiqiang Li, Ruimin Hu, Zhang, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259097705
003 DE-627
005 20231224190441.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2549459  |2 doi 
028 5 2 |a pubmed24n0863.xml 
035 |a (DE-627)NLM259097705 
035 |a (NLM)27046900 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao-Yuan Jing  |e verfasserin  |4 aut 
245 1 0 |a Multi-Label Dictionary Learning for Image Annotation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image annotation has attracted a lot of research interest, and multi-label learning is an effective technique for image annotation. How to effectively exploit the underlying correlation among labels is a crucial task for multi-label learning. Most existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between the label and the features of images untouched. Although, recently some methods attempt toward exploiting the label correlation in the input feature space by using the label information, they cannot effectively conduct the learning process in both the spaces simultaneously, and there still exists much room for improvement. In this paper, we propose a novel multi-label learning approach, named multi-label dictionary learning (MLDL) with label consistency regularization and partial-identical label embedding MLDL, which conducts MLDL and partial-identical label embedding simultaneously. In the input feature space, we incorporate the dictionary learning technique into multi-label learning and design the label consistency regularization term to learn the better representation of features. In the output label space, we design the partial-identical label embedding, in which the samples with exactly same label set can cluster together, and the samples with partial-identical label sets can collaboratively represent each other. Experimental results on the three widely used image datasets, including Corel 5K, IAPR TC12, and ESP Game, demonstrate the effectiveness of the proposed approach 
650 4 |a Journal Article 
700 1 |a Fei Wu  |e verfasserin  |4 aut 
700 1 |a Zhiqiang Li  |e verfasserin  |4 aut 
700 1 |a Ruimin Hu  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 6 vom: 04. Juni, Seite 2712-2725  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:6  |g day:04  |g month:06  |g pages:2712-2725 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2549459  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 6  |b 04  |c 06  |h 2712-2725