Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization

Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 3 vom: 05. März, Seite 476-89
Auteur principal: Sun, Yanfeng (Auteur)
Autres auteurs: Gao, Junbin, Hong, Xia, Mishra, Bamdev, Yin, Baocai
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM259093823
003 DE-627
005 20250219230315.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2465901  |2 doi 
028 5 2 |a pubmed25n0863.xml 
035 |a (DE-627)NLM259093823 
035 |a (NLM)27046492 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Yanfeng  |e verfasserin  |4 aut 
245 1 0 |a Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.06.2016 
500 |a Date Revised 06.04.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Junbin  |e verfasserin  |4 aut 
700 1 |a Hong, Xia  |e verfasserin  |4 aut 
700 1 |a Mishra, Bamdev  |e verfasserin  |4 aut 
700 1 |a Yin, Baocai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 3 vom: 05. März, Seite 476-89  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:38  |g year:2016  |g number:3  |g day:05  |g month:03  |g pages:476-89 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2465901  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 3  |b 05  |c 03  |h 476-89