Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification

Improvement guarantees for semi-supervised classifiers can currently only be given under restrictive conditions on the data. We propose a general way to perform semi-supervised parameter estimation for likelihood-based classifiers for which, on the full training set, the estimates are never worse th...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 3 vom: 05. März, Seite 462-75
Auteur principal: Loog, Marco (Auteur)
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article