Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification
Improvement guarantees for semi-supervised classifiers can currently only be given under restrictive conditions on the data. We propose a general way to perform semi-supervised parameter estimation for likelihood-based classifiers for which, on the full training set, the estimates are never worse th...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 3 vom: 05. März, Seite 462-75 |
---|---|
Auteur principal: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2016
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |