Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification

Improvement guarantees for semi-supervised classifiers can currently only be given under restrictive conditions on the data. We propose a general way to perform semi-supervised parameter estimation for likelihood-based classifiers for which, on the full training set, the estimates are never worse th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 3 vom: 05. März, Seite 462-75
1. Verfasser: Loog, Marco (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM259093815
003 DE-627
005 20231224190436.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2452921  |2 doi 
028 5 2 |a pubmed24n0863.xml 
035 |a (DE-627)NLM259093815 
035 |a (NLM)27046491 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Loog, Marco  |e verfasserin  |4 aut 
245 1 0 |a Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.06.2016 
500 |a Date Revised 06.04.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Improvement guarantees for semi-supervised classifiers can currently only be given under restrictive conditions on the data. We propose a general way to perform semi-supervised parameter estimation for likelihood-based classifiers for which, on the full training set, the estimates are never worse than the supervised solution in terms of the log-likelihood. We argue, moreover, that we may expect these solutions to really improve upon the supervised classifier in particular cases. In a worked-out example for LDA, we take it one step further and essentially prove that its semi-supervised version is strictly better than its supervised counterpart. The two new concepts that form the core of our estimation principle are contrast and pessimism. The former refers to the fact that our objective function takes the supervised estimates into account, enabling the semi-supervised solution to explicitly control the potential improvements over this estimate. The latter refers to the fact that our estimates are conservative and therefore resilient to whatever form the true labeling of the unlabeled data takes on. Experiments demonstrate the improvements in terms of both the log-likelihood and the classification error rate on independent test sets 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 3 vom: 05. März, Seite 462-75  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:3  |g day:05  |g month:03  |g pages:462-75 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2452921  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 3  |b 05  |c 03  |h 462-75