Automatic Shadow Detection and Removal from a Single Image

We present a framework to automatically detect and remove shadows in real world scenes from a single image. Previous works on shadow detection put a lot of effort in designing shadow variant and invariant hand-crafted features. In contrast, our framework automatically learns the most relevant featur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 3 vom: 05. März, Seite 431-46
1. Verfasser: Khan, Salman H (VerfasserIn)
Weitere Verfasser: Bennamoun, Mohammed, Sohel, Ferdous, Togneri, Roberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM259093793
003 DE-627
005 20250219230314.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2462355  |2 doi 
028 5 2 |a pubmed25n0863.xml 
035 |a (DE-627)NLM259093793 
035 |a (NLM)27046489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, Salman H  |e verfasserin  |4 aut 
245 1 0 |a Automatic Shadow Detection and Removal from a Single Image 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.06.2016 
500 |a Date Revised 06.04.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a framework to automatically detect and remove shadows in real world scenes from a single image. Previous works on shadow detection put a lot of effort in designing shadow variant and invariant hand-crafted features. In contrast, our framework automatically learns the most relevant features in a supervised manner using multiple convolutional deep neural networks (ConvNets). The features are learned at the super-pixel level and along the dominant boundaries in the image. The predicted posteriors based on the learned features are fed to a conditional random field model to generate smooth shadow masks. Using the detected shadow masks, we propose a Bayesian formulation to accurately extract shadow matte and subsequently remove shadows. The Bayesian formulation is based on a novel model which accurately models the shadow generation process in the umbra and penumbra regions. The model parameters are efficiently estimated using an iterative optimization procedure. Our proposed framework consistently performed better than the state-of-the-art on all major shadow databases collected under a variety of conditions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Sohel, Ferdous  |e verfasserin  |4 aut 
700 1 |a Togneri, Roberto  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 3 vom: 05. März, Seite 431-46  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:3  |g day:05  |g month:03  |g pages:431-46 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2462355  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 3  |b 05  |c 03  |h 431-46