A Fast Iterated Orthogonal Projection Framework for Smoke Simulation

We present a fast iterated orthogonal projection (IOP) framework for smoke simulations. By modifying the IOP framework with a different means for convergence, our framework significantly reduces the number of iterations required to converge to the desired precision. Our new iteration framework adds...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 22(2016), 5 vom: 05. Mai, Seite 1492-502
1. Verfasser: Yang, Yang (VerfasserIn)
Weitere Verfasser: Yang, Xubo, Yang, Shuangcai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM259088234
003 DE-627
005 20231224190429.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2446474  |2 doi 
028 5 2 |a pubmed24n0863.xml 
035 |a (DE-627)NLM259088234 
035 |a (NLM)27045907 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yang  |e verfasserin  |4 aut 
245 1 2 |a A Fast Iterated Orthogonal Projection Framework for Smoke Simulation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.08.2016 
500 |a Date Revised 06.04.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a fast iterated orthogonal projection (IOP) framework for smoke simulations. By modifying the IOP framework with a different means for convergence, our framework significantly reduces the number of iterations required to converge to the desired precision. Our new iteration framework adds a divergence redistributor component to IOP that can improve the impeded convergence logic of IOP. We tested Jacobi, GS and SOR as divergence redistributors and used the Multigrid scheme to generate a highly efficient Poisson solver. It provides a rapid convergence rate and requires less computation time. In all of our experiments, our method only requires 2-3 iterations to satisfy the convergence condition of 1e-5 and 5-7 iterations for 1e-10. Compared with the commonly used Incomplete Cholesky Preconditioned Conjugate Gradient(ICPCG) solver, our Poisson solver accelerates the overall speed to approximately 7- to 30-fold faster for grids ranging from 128(3) to 256(3). Our solver can accelerate more on larger grids because of the property that the iteration count required to satisfy the convergence condition is independent of the problem size. We use various experimental scenes and settings to demonstrate the efficiency of our method. In addition, we present a feasible method for both IOP and our fast IOP to support free surfaces 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Xubo  |e verfasserin  |4 aut 
700 1 |a Yang, Shuangcai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 22(2016), 5 vom: 05. Mai, Seite 1492-502  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:5  |g day:05  |g month:05  |g pages:1492-502 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2446474  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 5  |b 05  |c 05  |h 1492-502