|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM259068853 |
003 |
DE-627 |
005 |
20231224190404.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.5b04209
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0863.xml
|
035 |
|
|
|a (DE-627)NLM259068853
|
035 |
|
|
|a (NLM)27043919
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shinde, Dhanraj B
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Shear Assisted Electrochemical Exfoliation of Graphite to Graphene
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.08.2016
|
500 |
|
|
|a Date Revised 12.04.2016
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The exfoliation characteristics of graphite as a function of applied anodic potential (1-10 V) in combination with shear field (400-74 400 s(-1)) have been studied in a custom-designed microfluidic reactor. Systematic investigation by atomic force microscopy (AFM) indicates that at higher potentials thicker and more fragmented graphene sheets are obtained, while at potentials as low as 1 V, pronounced exfoliation is triggered by the influence of shear. The shear-assisted electrochemical exfoliation process yields large (∼10 μm) graphene flakes with a high proportion of single, bilayer, and trilayer graphene and small ID/IG ratio (0.21-0.32) with only a small contribution from carbon-oxygen species as demonstrated by X-ray photoelectron spectroscopy measurements. This method comprises intercalation of sulfate ions followed by exfoliation using shear induced by a flowing electrolyte. Our findings on the crucial role of hydrodynamics in accentuating the exfoliation efficiency suggest a safer, greener, and more automated method for production of high quality graphene from graphite
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Brenker, Jason
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Easton, Christopher D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tabor, Rico F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Neild, Adrian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Majumder, Mainak
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 32(2016), 14 vom: 12. Apr., Seite 3552-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2016
|g number:14
|g day:12
|g month:04
|g pages:3552-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.5b04209
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2016
|e 14
|b 12
|c 04
|h 3552-9
|