DETECTING EVOLUTIONARY TRANSFER OF GENES USING PhIGs(1)

© 2008 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 44(2008), 1 vom: 25. Feb., Seite 19-22
1. Verfasser: Boore, Jeffrey L (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article PhIGs algae bioinformatics cyanobacteria endosymbiosis evolution gene transfer genome orthology paralogy
LEADER 01000naa a22002652 4500
001 NLM259040436
003 DE-627
005 20231224190327.0
007 cr uuu---uuuuu
008 231224s2008 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1529-8817.2007.00436.x  |2 doi 
028 5 2 |a pubmed24n0863.xml 
035 |a (DE-627)NLM259040436 
035 |a (NLM)27041035 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Boore, Jeffrey L  |e verfasserin  |4 aut 
245 1 0 |a DETECTING EVOLUTIONARY TRANSFER OF GENES USING PhIGs(1) 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2016 
500 |a Date Revised 04.04.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2008 Phycological Society of America. 
520 |a Organisms have acquired plastids by convoluted paths that have provided multiple opportunities for gene transfer into a host nucleus from intracellular organisms, including the cyanobacterial ancestor of plastids, the proteobacterial ancestor of mitochondria, and both green and red algae whose engulfment has led to secondary acquisition of plastids. These gene movements are most accurately demonstrated by building phylogenetic trees that identify the evolutionary origin of each gene, and one effective tool for this is "PhIGs" (Phylogenetically Inferred Groups; http://PhIGs.org), a set of databases and computer tools with a Web interface for whole-genome evolutionary analysis. PhIGs takes as input gene sets of completely sequenced genomes, builds clusters of genes using a novel, graph-based approach, and reconstructs the evolutionary relationships among all gene families. The user can view and download the sequence alignments, compare intron-exon structures, and follow links to functional genomic databases. Currently, PhIGs contains 652,756 genes from 45 genomes grouped into 61,059 gene families. Graphical displays show the relative positions of these genes among genomes. PhIGs has been used to detect the evolutionary transfer of hundreds of genes from cyanobacteria and red algae into oömycete nuclear genomes, revealing that even though they have no plastids, their ancestors did, having secondarily acquired them from an intracellular red alga. A great number of genomes are soon to become available that are relevant to our broader understanding of the movement of genes among intracellular compartments after engulfing other organisms, and PhIGs will be an effective tool to interpret these gene movements 
650 4 |a Journal Article 
650 4 |a PhIGs 
650 4 |a algae 
650 4 |a bioinformatics 
650 4 |a cyanobacteria 
650 4 |a endosymbiosis 
650 4 |a evolution 
650 4 |a gene transfer 
650 4 |a genome 
650 4 |a orthology 
650 4 |a paralogy 
773 0 8 |i Enthalten in  |t Journal of phycology  |d 1966  |g 44(2008), 1 vom: 25. Feb., Seite 19-22  |w (DE-627)NLM098182994  |x 1529-8817  |7 nnns 
773 1 8 |g volume:44  |g year:2008  |g number:1  |g day:25  |g month:02  |g pages:19-22 
856 4 0 |u http://dx.doi.org/10.1111/j.1529-8817.2007.00436.x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_40 
912 |a GBV_ILN_72 
912 |a GBV_ILN_176 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2008  |e 1  |b 25  |c 02  |h 19-22