CLASSIFICATION OF THE GENUS ISHIGE (ISHIGEALES, PHAEOPHYCEAE) IN THE NORTH PACIFIC OCEAN WITH RECOGNITION OF ISHIGE FOLIACEA BASED ON PLASTID rbcl AND MITOCHONDRIAL cox3 GENE SEQUENCES(1)

© 2009 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 45(2009), 4 vom: 01. Aug., Seite 906-13
1. Verfasser: Lee, Kyung Min (VerfasserIn)
Weitere Verfasser: Boo, Ga Hun, Riosmena-Rodriguez, Rafael, Shin, Jong-Ahm, Boo, Sung Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article I. foliacea I. sinicola Ishige Phaeophyceae amphi-Pacific distribution biogeography cox3 rbcL taxonomy
Beschreibung
Zusammenfassung:© 2009 Phycological Society of America.
The taxonomy and biogeography of a genus with species that occur in geographically isolated regions is interesting. The brown algal genus Ishige Yendo is a good example, with species that apparently inhabit warm regions of both the northwestern and northeastern Pacific Ocean. We determined the sequences of mitochondrial cox3 and plastid rbcL genes from specimens of the genus collected over its distributional range. Analyses of the 86 cox3 and 97 rbcL sequences resulted in congruent trees in which Ishige sinicola (Setch. et N. L. Gardner) Chihara consisted of two distinct clades: one comprising samples from Korea and Japan, and the other comprising samples from the Gulf of California. Additional observations of the morphology and anatomy of the specimens agree with the molecular data. On the basis of results, we reinstated Ishige foliacea S. Okamura (considered a synonym of I. sinicola from the Gulf of California) for plants from the northwest Pacific region and designated a specimen in the Yendo Herbarium (SAP) as the lectotype. I. foliacea is distinguished by large (up to 20 cm) and wide (up to 20 mm) thalli, with a cortex of 4-7 cells, and a medulla composed of long, tangled hyphal cells. Both cox3 and rbcL sequence data strongly support the sister-area relationship between the northwest Pacific region and the Gulf of California. A likely explanation for this pattern would be the presence of a species ancestral to contemporary species of Ishige in both regions during the paleogeological period, with descendants later isolated by distance
Beschreibung:Date Completed 04.04.2016
Date Revised 01.04.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1529-8817
DOI:10.1111/j.1529-8817.2009.00704.x