|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM258856556 |
003 |
DE-627 |
005 |
20250219220843.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2011 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1529-8817.2011.00977.x
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0862.xml
|
035 |
|
|
|a (DE-627)NLM258856556
|
035 |
|
|
|a (NLM)27021980
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ito, Takayuki
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a REGULATION OF BIOSYNTHESIS OF DIMETHYLSULFONIOPROPIONATE AND ITS UPTAKE IN STERILE MUTANT OF ULVA PERTUSA (CHLOROPHYTA)1
|
264 |
|
1 |
|c 2011
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2011 Phycological Society of America.
|
520 |
|
|
|a It has been shown that marine algae produce the compatible solute dimethylsulfoniopropionate (DMSP) from methionine (Met) via four enzymatic reactions in which the third step, synthesis of 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) from 4-methylthio-2-hydroxybutyrate (MTHB), is the committing step. However, regulation of the biosynthetic pathways and transport properties of DMSP is largely unknown. Here, the effects of sulfur and sodium concentrations on the uptake and synthesis of DMSHB and DMSP were examined in a sterile mutant of Ulva pertusa Kjellm. Sulfur deficiency increased the activity of the sulfur assimilation enzyme O-acetyl serine sulfhydrylase but decreased the MTHB S-methyltransferase activity, suggesting the preferential utilization of sulfur atoms for Met metabolites other than DMSP. Uptake of DMSP and DMSHB was enhanced by S deficiency. High salinity enhanced the MTHB S-methyltransferase activity as well as the uptake of DMSHB. The MTHB S-methyltransferase activity was inhibited by its product DMSP. These data demonstrate the importance of MTHB S-methyltransferase activity and uptake of DMSHB for the regulation of DMSP
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a DMSP
|
650 |
|
4 |
|a Ulva
|
650 |
|
4 |
|a green algae
|
650 |
|
4 |
|a salt stress
|
650 |
|
4 |
|a sulfur deficiency
|
700 |
1 |
|
|a Asano, Yugo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tanaka, Yoshito
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Takabe, Teruhiro
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of phycology
|d 1966
|g 47(2011), 3 vom: 20. Juni, Seite 517-523
|w (DE-627)NLM098182994
|x 0022-3646
|7 nnns
|
773 |
1 |
8 |
|g volume:47
|g year:2011
|g number:3
|g day:20
|g month:06
|g pages:517-523
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1529-8817.2011.00977.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_72
|
912 |
|
|
|a GBV_ILN_176
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 47
|j 2011
|e 3
|b 20
|c 06
|h 517-523
|