EVALUATION OF ENVIRONMENTAL FACTORS ON CYANOBACTERIAL BLOOM IN EUTROPHIC RESERVOIR USING ARTIFICIAL NEURAL NETWORKS1

© 2011 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 47(2011), 3 vom: 29. Juni, Seite 495-504
1. Verfasser: Ahn, Chi-Yong (VerfasserIn)
Weitere Verfasser: Oh, Hee-Mock, Park, Young-Seuk
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article artificial neural network bloom cyanobacteria multilayer perceptron prediction model self-organizing map
LEADER 01000naa a22002652 4500
001 NLM25885653X
003 DE-627
005 20231224185925.0
007 cr uuu---uuuuu
008 231224s2011 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1529-8817.2011.00990.x  |2 doi 
028 5 2 |a pubmed24n0862.xml 
035 |a (DE-627)NLM25885653X 
035 |a (NLM)27021978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ahn, Chi-Yong  |e verfasserin  |4 aut 
245 1 0 |a EVALUATION OF ENVIRONMENTAL FACTORS ON CYANOBACTERIAL BLOOM IN EUTROPHIC RESERVOIR USING ARTIFICIAL NEURAL NETWORKS1 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2011 Phycological Society of America. 
520 |a Cyanobacterial blooms are a common issue in eutrophic freshwaters, and some cyanobacteria produce toxins, threatening the health of humans and livestock. Microcystin, a representative cyanobacterial hepatotoxin, is frequently detected in most Korean lakes and reservoirs. This study developed predictive models for cyanobacterial bloom using artificial neural networks (ANNs; self-organizing map [SOM] and multilayer perceptron [MLP]), including an evaluation of related environmental factors. Fourteen environmental factors, as independent variables for predicting the cyanobacteria density, were measured weekly in the Daechung Reservoir from spring to autumn over 5 years (2001, 2003-2006). Cyanobacterial density was highly associated with environmental factors measured 3 weeks earlier. The SOM model was efficient in visualizing the relationships between cyanobacteria and environmental factors, and also for tracing temporal change patterns in the environmental condition of the reservoir. And the MLP model exhibited a good predictive power for the cyanobacterial density, based on the environmental factors of 3 weeks earlier. The water temperature and total dissolved nitrogen were the major determinants for cyanobacteria. The water temperature had a stronger influence on cyanobacterial growth than the nutrient concentrations in eutrophic waters. Contrary to general expectations, the nitrogen compounds played a more important role in bloom formation than the phosphorus compounds 
650 4 |a Journal Article 
650 4 |a artificial neural network 
650 4 |a bloom 
650 4 |a cyanobacteria 
650 4 |a multilayer perceptron 
650 4 |a prediction model 
650 4 |a self-organizing map 
700 1 |a Oh, Hee-Mock  |e verfasserin  |4 aut 
700 1 |a Park, Young-Seuk  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of phycology  |d 1966  |g 47(2011), 3 vom: 29. Juni, Seite 495-504  |w (DE-627)NLM098182994  |x 1529-8817  |7 nnns 
773 1 8 |g volume:47  |g year:2011  |g number:3  |g day:29  |g month:06  |g pages:495-504 
856 4 0 |u http://dx.doi.org/10.1111/j.1529-8817.2011.00990.x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_40 
912 |a GBV_ILN_72 
912 |a GBV_ILN_176 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2011  |e 3  |b 29  |c 06  |h 495-504