The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133

© 2016 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 52(2016), 4 vom: 21. Aug., Seite 564-71
1. Verfasser: Naurin, Sejuti (VerfasserIn)
Weitere Verfasser: Bennett, Janine, Videau, Patrick, Philmus, Benjamin, Soule, Tanya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nostoc UVA response regulator scytonemin two-component regulatory system ultraviolet radiation Bacterial Proteins Indoles mehr... Phenols 152075-98-4
Beschreibung
Zusammenfassung:© 2016 Phycological Society of America.
Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production
Beschreibung:Date Completed 12.01.2018
Date Revised 18.09.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1529-8817
DOI:10.1111/jpy.12414