LIGHT DEPENDENCY OF PHOTOSYNTHETIC RECOVERY DURING WETTING AND THE ACCLIMATION OF PHOTOSYNTHETIC APPARATUS TO LIGHT FLUCTUATION IN A TERRESTRIAL CYANOBACTERIUM NOSTOC COMMUNE(1)

© 2011 Phycological Society of America.

Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology. - 1966. - 47(2011), 5 vom: 29. Okt., Seite 1063-71
1. Verfasser: Chen, Zhen (VerfasserIn)
Weitere Verfasser: Lu, GaoFei, Chen, Shuo, Chen, XiongWen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of phycology
Schlagworte:Journal Article Nostoc commune chlorophyll fluorescence cyanobacterium light photoinhibition photosynthesis
Beschreibung
Zusammenfassung:© 2011 Phycological Society of America.
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII (Fv /Fm ) during rewetting in the light rose to 85% of the maximum within ∼30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of Fv /Fm required only ∼3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of Fv /Fm was not affected by chloramphenicol (CMP), but severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) in the light, suggesting that the light-dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity
Beschreibung:Date Completed 30.03.2016
Date Revised 29.03.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1529-8817
DOI:10.1111/j.1529-8817.2011.01033.x