The memory of iron stress in strawberry plants

Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 104(2016) vom: 01. Juli, Seite 36-44
1. Verfasser: Gama, Florinda (VerfasserIn)
Weitere Verfasser: Saavedra, Teresa, da Silva, José Paulo, Miguel, Maria Graça, de Varennes, Amarilis, Correia, Pedro José, Pestana, Maribela
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Fragaria ananassa Iron deficiency Nutrients Organic acids Recovery Chlorophyll 1406-65-1 Iron E1UOL152H7 mehr... FMN Reductase EC 1.5.1.38 ferric citrate iron reductase EC 1.6.99.-
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier Masson SAS. All rights reserved.
To provide information towards optimization of strategies to treat Fe deficiency, experiments were conducted to study the responses of Fe-deficient plants to the resupply of Fe. Strawberry (Fragaria × ananassa Duch.) was used as model plant. Bare-root transplants of strawberry (cv. 'Diamante') were grown for 42 days in Hoagland's nutrient solutions without Fe (Fe0) and containing 10 μM of Fe as Fe-EDDHA (control, Fe10). For plants under Fe0 the total chlorophyll concentration of young leaves decreased progressively on time, showing the typical symptoms of iron chlorosis. After 35 days the Fe concentration was 6% of that observed for plants growing under Fe10. Half of plants growing under Fe0 were then Fe-resupplied by adding 10 μM of Fe to the Fe0 nutrient solution (FeR). Full Chlorophyll recovery of young leaves took place within 12 days. Root ferric chelate-reductase activity (FCR) and succinic and citric acid concentrations increased in FeR plants. Fe partition revealed that FeR plants expressively accumulated this nutrient in the crown and flowers. This observation can be due to a passive deactivation mechanism of the FCR activity, associated with continuous synthesis of succinic and citric acids at root level, and consequent greater uptake of Fe
Beschreibung:Date Completed 27.03.2017
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2016.03.019