Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 28(2016), 19 vom: 18. Mai, Seite 3703-10
Auteur principal: Zhang, Huabin (Auteur)
Autres auteurs: Wang, Tao, Wang, Junjie, Liu, Huimin, Dao, Thang Duy, Li, Mu, Liu, Guigao, Meng, Xianguang, Chang, Kun, Shi, Li, Nagao, Tadaaki, Ye, Jinhua
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article CO2 conversion Fe@C nanostructure metal-organic frameworks (MOFs) solar-driven
Description
Résumé:© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic FeC nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity
Description:Date Completed 17.07.2018
Date Revised 06.12.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201505187