Data-driven desirability function to measure patients' disease progression in a longitudinal study

Multiple outcomes are increasingly used to assess chronic disease progression. We discuss and show how desirability functions can be used to assess a patient overall response to a treatment using multiple outcome measures and each of them may contribute unequally to the final assessment. Because jud...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 43(2016), 5 vom: 01. Apr., Seite 783-795
1. Verfasser: Chen, Hsiu-Wen (VerfasserIn)
Weitere Verfasser: Wong, Weng Kee, Xu, Hongquan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article desirability function longitudinal data multiple outcomes nonlinear least squares scleroderma
LEADER 01000naa a22002652 4500
001 NLM258621028
003 DE-627
005 20231224185417.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0862.xml 
035 |a (DE-627)NLM258621028 
035 |a (NLM)26997738 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hsiu-Wen  |e verfasserin  |4 aut 
245 1 0 |a Data-driven desirability function to measure patients' disease progression in a longitudinal study 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Multiple outcomes are increasingly used to assess chronic disease progression. We discuss and show how desirability functions can be used to assess a patient overall response to a treatment using multiple outcome measures and each of them may contribute unequally to the final assessment. Because judgments on disease progression and the relative contribution of each outcome can be subjective, we propose a data-driven approach to minimize the biases by using desirability functions with estimated shapes and weights based on a given gold standard. Our method provides each patient with a meaningful overall progression score that facilitates comparison and clinical interpretation. We also extend the methodology in a novel way to monitor patients' disease progression when there are multiple time points and illustrate our method using a longitudinal data set from a randomized two-arm clinical trial for scleroderma patients 
650 4 |a Journal Article 
650 4 |a desirability function 
650 4 |a longitudinal data 
650 4 |a multiple outcomes 
650 4 |a nonlinear least squares 
650 4 |a scleroderma 
700 1 |a Wong, Weng Kee  |e verfasserin  |4 aut 
700 1 |a Xu, Hongquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 43(2016), 5 vom: 01. Apr., Seite 783-795  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:43  |g year:2016  |g number:5  |g day:01  |g month:04  |g pages:783-795 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2016  |e 5  |b 01  |c 04  |h 783-795