Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 67(2016), 10 vom: 15. Mai, Seite 3165-75
1. Verfasser: Rademacher, Nadine (VerfasserIn)
Weitere Verfasser: Kern, Ramona, Fujiwara, Takayuki, Mettler-Altmann, Tabea, Miyagishima, Shin-Ya, Hagemann, Martin, Eisenhut, Marion, Weber, Andreas P M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Evolution glycolate oxidase knockout mutant metabolites photorespiration red alga. Glycolates glycolic acid 0WT12SX38S mehr... Chlorophyll 1406-65-1 Carbon Dioxide 142M471B3J Lactic Acid 33X04XA5AT Alcohol Oxidoreductases EC 1.1.- glycollate oxidase EC 1.1.3.15 Chlorophyll A YF5Q9EJC8Y
LEADER 01000naa a22002652 4500
001 NLM258590521
003 DE-627
005 20231224185336.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erw118  |2 doi 
028 5 2 |a pubmed24n0862.xml 
035 |a (DE-627)NLM258590521 
035 |a (NLM)26994474 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rademacher, Nadine  |e verfasserin  |4 aut 
245 1 0 |a Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.09.2017 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mechanistic detail of the photorespiratory pathway in red algae is scarce. The unicellular red alga Cyanidioschyzon merolae represents a model for the red lineage. Its genome is fully sequenced, and tools for targeted gene engineering are available. To study the function and importance of photorespiration in red algae, we chose glycolate oxidase (GOX) as the target. GOX catalyses the conversion of glycolate into glyoxylate, while hydrogen peroxide is generated as a side-product. The function of the candidate GOX from C. merolae was verified by the fact that recombinant GOX preferred glycolate over L-lactate as a substrate. Yellow fluorescent protein-GOX fusion proteins showed that GOX is targeted to peroxisomes in C. merolae The GOX knockout mutant lines showed a high-carbon-requiring phenotype with decreased growth and reduced photosynthetic activity compared to the wild type under ambient air conditions. Metabolite analyses revealed glycolate and glycine accumulation in the mutant cells after a shift from high CO2 conditions to ambient air. In summary, or results demonstrate that photorespiratory metabolism is essential for red algae. The use of a peroxisomal GOX points to a high photorespiratory flux as an ancestral feature of all photosynthetic eukaryotes 
650 4 |a Journal Article 
650 4 |a Evolution 
650 4 |a glycolate oxidase 
650 4 |a knockout mutant 
650 4 |a metabolites 
650 4 |a photorespiration 
650 4 |a red alga. 
650 7 |a Glycolates  |2 NLM 
650 7 |a glycolic acid  |2 NLM 
650 7 |a 0WT12SX38S  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Lactic Acid  |2 NLM 
650 7 |a 33X04XA5AT  |2 NLM 
650 7 |a Alcohol Oxidoreductases  |2 NLM 
650 7 |a EC 1.1.-  |2 NLM 
650 7 |a glycollate oxidase  |2 NLM 
650 7 |a EC 1.1.3.15  |2 NLM 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
700 1 |a Kern, Ramona  |e verfasserin  |4 aut 
700 1 |a Fujiwara, Takayuki  |e verfasserin  |4 aut 
700 1 |a Mettler-Altmann, Tabea  |e verfasserin  |4 aut 
700 1 |a Miyagishima, Shin-Ya  |e verfasserin  |4 aut 
700 1 |a Hagemann, Martin  |e verfasserin  |4 aut 
700 1 |a Eisenhut, Marion  |e verfasserin  |4 aut 
700 1 |a Weber, Andreas P M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 67(2016), 10 vom: 15. Mai, Seite 3165-75  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:67  |g year:2016  |g number:10  |g day:15  |g month:05  |g pages:3165-75 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erw118  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 67  |j 2016  |e 10  |b 15  |c 05  |h 3165-75