Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway

© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 211(2016), 2 vom: 16. Juli, Seite 502-15
1. Verfasser: Hanemian, Mathieu (VerfasserIn)
Weitere Verfasser: Barlet, Xavier, Sorin, Céline, Yadeta, Koste A, Keller, Harald, Favery, Bruno, Simon, Rüdiger, Thomma, Bart P H J, Hartmann, Caroline, Crespi, Martin, Marco, Yves, Tremousaygue, Dominique, Deslandes, Laurent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Affymetrix gene Chip Arabidopsis thaliana CLAVATA NF-YA bacterial wilt disease miR169 plant susceptibility Arabidopsis Proteins CLV2 protein, Arabidopsis mehr... Ethylenes MIRN169 microRNA, Arabidopsis Membrane Proteins MicroRNAs ethylene 91GW059KN7 CLV1 protein, Arabidopsis EC 2.7.11.1 Protein Serine-Threonine Kinases Salicylic Acid O414PZ4LPZ
LEADER 01000naa a22002652 4500
001 NLM258550295
003 DE-627
005 20231224185239.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.13913  |2 doi 
028 5 2 |a pubmed24n0861.xml 
035 |a (DE-627)NLM258550295 
035 |a (NLM)26990325 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hanemian, Mathieu  |e verfasserin  |4 aut 
245 1 0 |a Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.01.2018 
500 |a Date Revised 04.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. 
520 |a Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module 
650 4 |a Journal Article 
650 4 |a Affymetrix gene Chip 
650 4 |a Arabidopsis thaliana 
650 4 |a CLAVATA 
650 4 |a NF-YA 
650 4 |a bacterial wilt disease 
650 4 |a miR169 
650 4 |a plant susceptibility 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a CLV2 protein, Arabidopsis  |2 NLM 
650 7 |a Ethylenes  |2 NLM 
650 7 |a MIRN169 microRNA, Arabidopsis  |2 NLM 
650 7 |a Membrane Proteins  |2 NLM 
650 7 |a MicroRNAs  |2 NLM 
650 7 |a ethylene  |2 NLM 
650 7 |a 91GW059KN7  |2 NLM 
650 7 |a CLV1 protein, Arabidopsis  |2 NLM 
650 7 |a EC 2.7.11.1  |2 NLM 
650 7 |a Protein Serine-Threonine Kinases  |2 NLM 
650 7 |a EC 2.7.11.1  |2 NLM 
650 7 |a Salicylic Acid  |2 NLM 
650 7 |a O414PZ4LPZ  |2 NLM 
700 1 |a Barlet, Xavier  |e verfasserin  |4 aut 
700 1 |a Sorin, Céline  |e verfasserin  |4 aut 
700 1 |a Yadeta, Koste A  |e verfasserin  |4 aut 
700 1 |a Keller, Harald  |e verfasserin  |4 aut 
700 1 |a Favery, Bruno  |e verfasserin  |4 aut 
700 1 |a Simon, Rüdiger  |e verfasserin  |4 aut 
700 1 |a Thomma, Bart P H J  |e verfasserin  |4 aut 
700 1 |a Hartmann, Caroline  |e verfasserin  |4 aut 
700 1 |a Crespi, Martin  |e verfasserin  |4 aut 
700 1 |a Marco, Yves  |e verfasserin  |4 aut 
700 1 |a Tremousaygue, Dominique  |e verfasserin  |4 aut 
700 1 |a Deslandes, Laurent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 211(2016), 2 vom: 16. Juli, Seite 502-15  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:211  |g year:2016  |g number:2  |g day:16  |g month:07  |g pages:502-15 
856 4 0 |u http://dx.doi.org/10.1111/nph.13913  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 211  |j 2016  |e 2  |b 16  |c 07  |h 502-15