Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network
© 2014 Phycological Society of America.
Veröffentlicht in: | Journal of phycology. - 1966. - 51(2015), 1 vom: 12. Feb., Seite 133-43 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Journal of phycology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't diatoms flood monsoon resilience resistance river semiarid southwestern United States |
Zusammenfassung: | © 2014 Phycological Society of America. Disturbances such as floods and droughts play a central role in determining the structure of riverine benthic biological assemblages. Extreme disturbances from flash floods are often restricted to part of the river network and the magnitude of the flood disturbance may lessen as floods propagate downstream. The present study aimed to characterize the impact of summer monsoonal floods on the resistance and resilience of the benthic diatom assemblage structure in nine river reaches of increasing drainage size within the Gila River in the southwestern United States. Monsoonal floods had a profound effect on the diatom assemblage in the Gila River, but the effects were not related to drainage size except for the response of algal biomass. During monsoons, algal biomass was effectively reduced in smaller and larger systems, but minor changes were observed in medium systems. Resistance and resilience of the diatom assemblage to floods were related to specific species traits, mainly to growth forms. Tightly adhered, adnate and prostrate species (Achnanthidium spp., Cocconeis spp.) exhibited high resistance to repeated scour disturbance. Loosely attached diatoms, such as Nitzschia spp. and Navicula spp., were most susceptible to drift and scour. However, recovery of the diatom assemblage was very quick indicating a high resilience, especially in terms of biomass and diversity. Regional hydroclimatic models predict greater precipitation variability, which will select for diatoms resilient to bed-mobilizing disturbances. The results of this study may help anticipate future benthic diatom assemblage patterns in the southwestern United States resulting from a more variable climate |
---|---|
Beschreibung: | Date Completed 26.07.2016 Date Revised 18.03.2016 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1529-8817 |
DOI: | 10.1111/jpy.12260 |