A Sphere-Description-Based Approach for Multiple-Instance Learning

Multiple-instance learning (MIL) is a generalization of supervised learning which addresses the classification of bags. Similar to traditional supervised learning, most of the existing MIL work is proposed based on the assumption that a representative training set is available for a proper learning...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 2 vom: 11. Feb., Seite 242-257
1. Verfasser: Xiao, Yanshan (VerfasserIn)
Weitere Verfasser: Liu, Bo, Hao, Zhifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM258436476
003 DE-627
005 20231224185017.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2539952  |2 doi 
028 5 2 |a pubmed24n0861.xml 
035 |a (DE-627)NLM258436476 
035 |a (NLM)26978553 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Yanshan  |e verfasserin  |4 aut 
245 1 2 |a A Sphere-Description-Based Approach for Multiple-Instance Learning 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.08.2018 
500 |a Date Revised 23.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiple-instance learning (MIL) is a generalization of supervised learning which addresses the classification of bags. Similar to traditional supervised learning, most of the existing MIL work is proposed based on the assumption that a representative training set is available for a proper learning of the classifier. That is to say, the training data can appropriately describe the distribution of positive and negative data in the testing set. However, this assumption may not be always satisfied. In real-world MIL applications, the negative data in the training set may not sufficiently represent the distribution of negative data in the testing set. Hence, how to learn an appropriate MIL classifier when a representative training set is not available becomes a key challenge for real-world MIL applications. To deal with this problem, we propose a novel Sphere-Description-Based approach for Multiple-Instance Learning (SDB-MIL). SDB-MIL learns an optimal sphere by determining a large margin among the instances, and meanwhile ensuring that each positive bag has at least one instance inside the sphere and all negative bags are outside the sphere. Enclosing at least one instance from each positive bag in the sphere enables a more desirable MIL classifier when the negative data in the training set cannot sufficiently represent the distribution of negative data in the testing set. Substantial experiments on the benchmark and real-world MIL datasets show that SDB-MIL obtains statistically better classification performance than the MIL methods compared 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Bo  |e verfasserin  |4 aut 
700 1 |a Hao, Zhifeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 2 vom: 11. Feb., Seite 242-257  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:2  |g day:11  |g month:02  |g pages:242-257 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2539952  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 2  |b 11  |c 02  |h 242-257