Blessing of Dimensionality : Recovering Mixture Data via Dictionary Pursuit

This paper studies the problem of recovering the authentic samples that lie on a union of multiple subspaces from their corrupted observations. Due to the high-dimensional and massive nature of today's data-driven community, it is arguable that the target matrix (i.e., authentic sample matrix)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 11. Jan., Seite 47-60
1. Verfasser: Liu, Guangcan (VerfasserIn)
Weitere Verfasser: Liu, Qingshan, Li, Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM258436468
003 DE-627
005 20231224185017.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0861.xml 
035 |a (DE-627)NLM258436468 
035 |a (NLM)26978552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Guangcan  |e verfasserin  |4 aut 
245 1 0 |a Blessing of Dimensionality  |b Recovering Mixture Data via Dictionary Pursuit 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2018 
500 |a Date Revised 06.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper studies the problem of recovering the authentic samples that lie on a union of multiple subspaces from their corrupted observations. Due to the high-dimensional and massive nature of today's data-driven community, it is arguable that the target matrix (i.e., authentic sample matrix) to recover is often low-rank. In this case, the recently established Robust Principal Component Analysis (RPCA) method already provides us a convenient way to solve the problem of recovering mixture data. However, in general, RPCA is not good enough because the incoherent condition assumed by RPCA is not so consistent with the mixture structure of multiple subspaces. Namely, when the subspace number grows, the row-coherence of data keeps heightening and, accordingly, RPCA degrades. To overcome the challenges arising from mixture data, we suggest to consider LRR in this paper. We elucidate that LRR can well handle mixture data, as long as its dictionary is configured appropriately. More precisely, we mathematically prove that LRR can weaken the dependence on the row-coherence, provided that the dictionary is well-conditioned and has a rank of not too high. In particular, if the dictionary itself is sufficiently low-rank, then the dependence on the row-coherence can be completely removed. These provide some elementary principles for dictionary learning and naturally lead to a practical algorithm for recovering mixture data. Our experiments on randomly generated matrices and real motion sequences show promising results 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Qingshan  |e verfasserin  |4 aut 
700 1 |a Li, Ping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 11. Jan., Seite 47-60  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:11  |g month:01  |g pages:47-60 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 11  |c 01  |h 47-60