Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water

  This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 88(2016), 12 vom: 01. Dez., Seite 2285-2291
1. Verfasser: Fan, Shu-Kai S (VerfasserIn)
Weitere Verfasser: Kuan, Wen-Hui, Fan, Chihhao, Chen, Chiu-Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM258274166
003 DE-627
005 20250219200911.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.2175/106143016X14504669768570  |2 doi 
028 5 2 |a pubmed25n0860.xml 
035 |a (DE-627)NLM258274166 
035 |a (NLM)26961282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Shu-Kai S  |e verfasserin  |4 aut 
245 1 0 |a Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.03.2017 
500 |a Date Revised 11.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a   This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated 
650 4 |a Journal Article 
700 1 |a Kuan, Wen-Hui  |e verfasserin  |4 aut 
700 1 |a Fan, Chihhao  |e verfasserin  |4 aut 
700 1 |a Chen, Chiu-Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 88(2016), 12 vom: 01. Dez., Seite 2285-2291  |w (DE-627)NLM098214292  |x 1061-4303  |7 nnns 
773 1 8 |g volume:88  |g year:2016  |g number:12  |g day:01  |g month:12  |g pages:2285-2291 
856 4 0 |u http://dx.doi.org/10.2175/106143016X14504669768570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 88  |j 2016  |e 12  |b 01  |c 12  |h 2285-2291