Empirical Minimum Bayes Risk Prediction

When building vision systems that predict structured objects such as image segmentations or human poses, a crucial concern is performance under task-specific evaluation measures (e.g., Jaccard Index or Average Precision). An ongoing research challenge is to optimize predictions so as to maximize per...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 11. Jan., Seite 75-86
1. Verfasser: Premachandran, Vittal (VerfasserIn)
Weitere Verfasser: Tarlow, Daniel, Yuille, Alan L, Batra, Dhruv
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM258263865
003 DE-627
005 20231224184627.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM258263865 
035 |a (NLM)26960219 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Premachandran, Vittal  |e verfasserin  |4 aut 
245 1 0 |a Empirical Minimum Bayes Risk Prediction 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2018 
500 |a Date Revised 06.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a When building vision systems that predict structured objects such as image segmentations or human poses, a crucial concern is performance under task-specific evaluation measures (e.g., Jaccard Index or Average Precision). An ongoing research challenge is to optimize predictions so as to maximize performance on such complex measures. In this work, we present a simple meta-algorithm that is surprisingly effective - Empirical Min Bayes Risk. EMBR takes as input a pre-trained model that would normally be the final product and learns three additional parameters so as to optimize performance on the complex instance-level high-order task-specific measure. We demonstrate EMBR in several domains, taking existing state-of-the-art algorithms and improving performance up to 8 percent, simply by learning three extra parameters. Our code is publicly available and the results presented in this paper can be replicated from our code-release 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Tarlow, Daniel  |e verfasserin  |4 aut 
700 1 |a Yuille, Alan L  |e verfasserin  |4 aut 
700 1 |a Batra, Dhruv  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 11. Jan., Seite 75-86  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:11  |g month:01  |g pages:75-86 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 11  |c 01  |h 75-86