Bayesian Constrained Local Models Revisited

This paper presents a novel Bayesian formulation for aligning faces in unseen images. Our approach revisits the Constrained Local Models (CLM) formulation where an ensemble of local feature detectors are constrained to lie within the subspace spanned by a Point Distribution Model (PDM). Fitting such...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 4 vom: 09. Apr., Seite 704-16
1. Verfasser: Martins, Pedro (VerfasserIn)
Weitere Verfasser: Henriques, João F, Caseiro, Rui, Batista, Jorge
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM258259574
003 DE-627
005 20250219200633.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2462343  |2 doi 
028 5 2 |a pubmed25n0860.xml 
035 |a (DE-627)NLM258259574 
035 |a (NLM)26959675 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Martins, Pedro  |e verfasserin  |4 aut 
245 1 0 |a Bayesian Constrained Local Models Revisited 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2016 
500 |a Date Revised 10.03.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel Bayesian formulation for aligning faces in unseen images. Our approach revisits the Constrained Local Models (CLM) formulation where an ensemble of local feature detectors are constrained to lie within the subspace spanned by a Point Distribution Model (PDM). Fitting such a model to an image typically involves two main steps: a local search using a detector, obtaining response maps for each landmark (likelihood term) and a global optimization that finds the PDM parameters that jointly maximize all the detections at once. The so-called global optimization can be posed as a Bayesian inference problem, where the posterior distribution of the shape (and pose) parameters can be inferred in a maximum a posteriori (MAP) sense. This work introduces an extended Bayesian global optimization strategy that includes two novel additions: (1) to perform second order updates of the PDM parameters (accounting for their covariance) and (2) to model the underlying dynamics of the shape variations, encoded in the prior term, by using recursive Bayesian estimation. Extensive evaluations were performed against state-of-the-art methods on several standard datasets (IMM, BioID, XM2VTS, LFW and FGNET Talking Face). Results show that the proposed approach significantly increases the fitting performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Henriques, João F  |e verfasserin  |4 aut 
700 1 |a Caseiro, Rui  |e verfasserin  |4 aut 
700 1 |a Batista, Jorge  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 4 vom: 09. Apr., Seite 704-16  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:4  |g day:09  |g month:04  |g pages:704-16 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2462343  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 4  |b 09  |c 04  |h 704-16