Intrinsic Scene Properties from a Single RGB-D Image

In this paper, we present a technique for recovering a model of shape, illumination, reflectance, and shading from a single image taken from an RGB-D sensor. To do this, we extend the SIRFS ("shape, illumination and reflectance from shading") model, which recovers intrinsic scene propertie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 4 vom: 09. Apr., Seite 690-703
1. Verfasser: Barron, Jonathan T (VerfasserIn)
Weitere Verfasser: Malik, Jitendra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:In this paper, we present a technique for recovering a model of shape, illumination, reflectance, and shading from a single image taken from an RGB-D sensor. To do this, we extend the SIRFS ("shape, illumination and reflectance from shading") model, which recovers intrinsic scene properties from a single image. Though SIRFS works well on neatly segmented images of objects, it performs poorly on images of natural scenes which often contain occlusion and spatially-varying illumination. We therefore present Scene-SIRFS, a generalization of SIRFS in which we model a scene using a mixture of shapes and a mixture of illuminations, where those mixture components are embedded in a "soft" segmentation-like representation of the input image. We use the noisy depth maps provided by RGB-D sensors (such as the Microsoft Kinect) to guide and improve shape estimation. Our model takes as input a single RGB-D image and produces as output an improved depth map, a set of surface normals, a reflectance image, a shading image, and a spatially varying model of illumination. The output of our model can be used for graphics applications such as relighting and retargeting, or for more broad applications (recognition, segmentation) involving RGB-D images
Beschreibung:Date Completed 12.07.2016
Date Revised 10.03.2016
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2015.2439286