Adopting Abstract Images for Semantic Scene Understanding

Relating visual information to its linguistic semantic meaning remains an open and challenging area of research. The semantic meaning of images depends on the presence of objects, their attributes and their relations to other objects. But precisely characterizing this dependence requires extracting...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 4 vom: 09. Apr., Seite 627-38
1. Verfasser: Zitnick, C Lawrence (VerfasserIn)
Weitere Verfasser: Vedantam, Ramakrishna, Parikh, Devi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM258259485
003 DE-627
005 20231224184621.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2366143  |2 doi 
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM258259485 
035 |a (NLM)26959669 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zitnick, C Lawrence  |e verfasserin  |4 aut 
245 1 0 |a Adopting Abstract Images for Semantic Scene Understanding 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2016 
500 |a Date Revised 10.03.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Relating visual information to its linguistic semantic meaning remains an open and challenging area of research. The semantic meaning of images depends on the presence of objects, their attributes and their relations to other objects. But precisely characterizing this dependence requires extracting complex visual information from an image, which is in general a difficult and yet unsolved problem. In this paper, we propose studying semantic information in abstract images created from collections of clip art. Abstract images provide several advantages over real images. They allow for the direct study of how to infer high-level semantic information, since they remove the reliance on noisy low-level object, attribute and relation detectors, or the tedious hand-labeling of real images. Importantly, abstract images also allow the ability to generate sets of semantically similar scenes. Finding analogous sets of real images that are semantically similar would be nearly impossible. We create 1,002 sets of 10 semantically similar abstract images with corresponding written descriptions. We thoroughly analyze this dataset to discover semantically important features, the relations of words to visual features and methods for measuring semantic similarity. Finally, we study the relation between the saliency and memorability of objects and their semantic importance 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Vedantam, Ramakrishna  |e verfasserin  |4 aut 
700 1 |a Parikh, Devi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 4 vom: 09. Apr., Seite 627-38  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:4  |g day:09  |g month:04  |g pages:627-38 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2366143  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 4  |b 09  |c 04  |h 627-38