Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition

This paper proposes a hierarchical clustering multi-task learning (HC-MTL) method for joint human action grouping and recognition. Specifically, we formulate the objective function into the group-wise least square loss regularized by low rank and sparsity with respect to two latent variables, model...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 05. Jan., Seite 102-114
1. Verfasser: Liu, An-An (VerfasserIn)
Weitere Verfasser: Su, Yu-Ting, Nie, Wei-Zhi, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM258215461
003 DE-627
005 20231224184526.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM258215461 
035 |a (NLM)26955018 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, An-An  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a hierarchical clustering multi-task learning (HC-MTL) method for joint human action grouping and recognition. Specifically, we formulate the objective function into the group-wise least square loss regularized by low rank and sparsity with respect to two latent variables, model parameters and grouping information, for joint optimization. To handle this non-convex optimization, we decompose it into two sub-tasks, multi-task learning and task relatedness discovery. First, we convert this non-convex objective function into the convex formulation by fixing the latent grouping information. This new objective function focuses on multi-task learning by strengthening the shared-action relationship and action-specific feature learning. Second, we leverage the learned model parameters for the task relatedness measure and clustering. In this way, HC-MTL can attain both optimal action models and group discovery by alternating iteratively. The proposed method is validated on three kinds of challenging datasets, including six realistic action datasets (Hollywood2, YouTube, UCF Sports, UCF50, HMDB51 & UCF101), two constrained datasets (KTH & TJU), and two multi-view datasets (MV-TJU & IXMAS). The extensive experimental results show that: 1) HC-MTL can produce competing performances to the state of the arts for action recognition and grouping; 2) HC-MTL can overcome the difficulty in heuristic action grouping simply based on human knowledge; 3) HC-MTL can avoid the possible inconsistency between the subjective action grouping depending on human knowledge and objective action grouping based on the feature subspace distributions of multiple actions. Comparison with the popular clustered multi-task learning further reveals that the discovered latent relatedness by HC-MTL aids inducing the group-wise multi-task learning and boosts the performance. To the best of our knowledge, ours is the first work that breaks the assumption that all actions are either independent for individual learning or correlated for joint modeling and proposes HC-MTL for automated, joint action grouping and modeling 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Su, Yu-Ting  |e verfasserin  |4 aut 
700 1 |a Nie, Wei-Zhi  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 05. Jan., Seite 102-114  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:05  |g month:01  |g pages:102-114 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 05  |c 01  |h 102-114