Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning

Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 01. Jan., Seite 189-203
1. Verfasser: Cinbis, Ramazan Gokberk (VerfasserIn)
Weitere Verfasser: Verbeek, Jakob, Schmid, Cordelia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257990666
003 DE-627
005 20231224184032.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM257990666 
035 |a (NLM)26930676 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cinbis, Ramazan Gokberk  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2018 
500 |a Date Revised 06.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image, without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method, which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using the PASCAL VOC 2007 dataset, which verifies the effectiveness of our approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Verbeek, Jakob  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 01. Jan., Seite 189-203  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:01  |g month:01  |g pages:189-203 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 01  |c 01  |h 189-203