Scene Parsing With Integration of Parametric and Non-Parametric Models

We adopt convolutional neural networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 5 vom: 06. Mai, Seite 2379-91
1. Verfasser: Shuai, Bing (VerfasserIn)
Weitere Verfasser: Zuo, Zhen, Wang, Gang, Wang, Bing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257974563
003 DE-627
005 20231224184007.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2533862  |2 doi 
028 5 2 |a pubmed24n0859.xml 
035 |a (DE-627)NLM257974563 
035 |a (NLM)26929044 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shuai, Bing  |e verfasserin  |4 aut 
245 1 0 |a Scene Parsing With Integration of Parametric and Non-Parametric Models 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2016 
500 |a Date Revised 25.07.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We adopt convolutional neural networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on learning different and complementary visual patterns. The local beliefs of pixels are output by CNN-Ensemble. Considering that visually similar pixels are indistinguishable under local context, we leverage the global scene semantics to alleviate the local ambiguity. The global scene constraint is mathematically achieved by adding a global energy term to the labeling energy function, and it is practically estimated in a non-parametric framework. A large margin-based CNN metric learning method is also proposed for better global belief estimation. In the end, the integration of local and global beliefs gives rise to the class likelihood of pixels, based on which maximum marginal inference is performed to generate the label prediction maps. Even without any post-processing, we achieve the state-of-the-art results on the challenging SiftFlow and Barcelona benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zuo, Zhen  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Wang, Bing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 5 vom: 06. Mai, Seite 2379-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:5  |g day:06  |g month:05  |g pages:2379-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2533862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 5  |b 06  |c 05  |h 2379-91