FDMX : extended X-ray absorption fine structure calculations using the finite difference method

A new theoretical approach and computational package, FDMX, for general calculations of X-ray absorption fine structure (XAFS) over an extended energy range within a full-potential model is presented. The final-state photoelectron wavefunction is calculated over an energy-dependent spatial mesh, all...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 23(2016), 2 vom: 01. März, Seite 551-9
1. Verfasser: Bourke, Jay D (VerfasserIn)
Weitere Verfasser: Chantler, Christopher T, Joly, Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article FDMNES FDMX X-ray absorption XAFS fine structure finite difference methods
Beschreibung
Zusammenfassung:A new theoretical approach and computational package, FDMX, for general calculations of X-ray absorption fine structure (XAFS) over an extended energy range within a full-potential model is presented. The final-state photoelectron wavefunction is calculated over an energy-dependent spatial mesh, allowing for a complete representation of all scattering paths. The electronic potentials and corresponding wavefunctions are subject to constraints based on physicality and self-consistency, allowing for accurate absorption cross sections in the near-edge region, while higher-energy results are enabled by the implementation of effective Debye-Waller damping and new implementations of second-order lifetime broadening. These include inelastic photoelectron scattering and, for the first time, plasmon excitation coupling. This is the first full-potential package available that can calculate accurate XAFS spectra across a complete energy range within a single framework and without fitted parameters. Example spectra are provided for elemental Sn, rutile TiO2 and the FeO6 octahedron
Beschreibung:Date Completed 24.06.2016
Date Revised 26.02.2016
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1600-5775
DOI:10.1107/S1600577516001193