Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering
The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-inciden...
Veröffentlicht in: | Journal of synchrotron radiation. - 1994. - 23(2016), 2 vom: 01. März, Seite 455-63 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | Journal of synchrotron radiation |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't GISAXS GIWAXS in situ micro-reactor |
Zusammenfassung: | The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles |
---|---|
Beschreibung: | Date Completed 24.06.2016 Date Revised 12.11.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1600-5775 |
DOI: | 10.1107/S1600577516001387 |