Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution

Salient edge selection and time-varying regularization are two crucial techniques to guarantee the success of maximum a posteriori (MAP)-based blind deconvolution. However, the existing approaches usually rely on carefully designed regularizers and handcrafted parameter tuning to obtain satisfactory...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 4 vom: 25. Apr., Seite 1751-64
1. Verfasser: Wangmeng Zuo (VerfasserIn)
Weitere Verfasser: Dongwei Ren, Zhang, David, Shuhang Gu, Lei Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257843868
003 DE-627
005 20231224183715.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2531905  |2 doi 
028 5 2 |a pubmed24n0859.xml 
035 |a (DE-627)NLM257843868 
035 |a (NLM)26915121 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wangmeng Zuo  |e verfasserin  |4 aut 
245 1 0 |a Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.07.2016 
500 |a Date Revised 14.07.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Salient edge selection and time-varying regularization are two crucial techniques to guarantee the success of maximum a posteriori (MAP)-based blind deconvolution. However, the existing approaches usually rely on carefully designed regularizers and handcrafted parameter tuning to obtain satisfactory estimation of the blur kernel. Many regularizers exhibit the structure-preserving smoothing capability, but fail to enhance salient edges. In this paper, under the MAP framework, we propose the iteration-wise ℓp-norm regularizers together with data-driven strategy to address these issues. First, we extend the generalized shrinkage-thresholding (GST) operator for ℓp-norm minimization with negative p value, which can sharpen salient edges while suppressing trivial details. Then, the iteration-wise GST parameters are specified to allow dynamical salient edge selection and time-varying regularization. Finally, instead of handcrafted tuning, a principled discriminative learning approach is proposed to learn the iterationwise GST operators from the training dataset. Furthermore, the multi-scale scheme is developed to improve the efficiency of the algorithm. Experimental results show that, negative p value is more effective in estimating the coarse shape of blur kernel at the early stage, and the learned GST operators can be well generalized to other dataset and real world blurry images. Compared with the state-of-the-art methods, our method achieves better deblurring results in terms of both quantitative metrics and visual quality, and it is much faster than the state-of-the-art patch-based blind deconvolution method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dongwei Ren  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
700 1 |a Shuhang Gu  |e verfasserin  |4 aut 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 4 vom: 25. Apr., Seite 1751-64  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:4  |g day:25  |g month:04  |g pages:1751-64 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2531905  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 4  |b 25  |c 04  |h 1751-64