An Efficient Joint Formulation for Bayesian Face Verification

This paper revisits the classical Bayesian face recognition algorithm from Baback Moghaddam et al. and proposes enhancements tailored to face verification, the problem of predicting whether or not a pair of facial images share the same identity. Like a variety of face verification algorithms, the or...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 1 vom: 25. Jan., Seite 32-46
1. Verfasser: Chen, Dong (VerfasserIn)
Weitere Verfasser: Cao, Xudong, Wipf, David, Wen, Fang, Sun, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM257843787
003 DE-627
005 20231224183715.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0859.xml 
035 |a (DE-627)NLM257843787 
035 |a (NLM)26915111 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Dong  |e verfasserin  |4 aut 
245 1 3 |a An Efficient Joint Formulation for Bayesian Face Verification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2018 
500 |a Date Revised 06.08.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper revisits the classical Bayesian face recognition algorithm from Baback Moghaddam et al. and proposes enhancements tailored to face verification, the problem of predicting whether or not a pair of facial images share the same identity. Like a variety of face verification algorithms, the original Bayesian face model only considers the appearance difference between two faces rather than the raw images themselves. However, we argue that such a fixed and blind projection may prematurely reduce the separability between classes. Consequently, we model two facial images jointly with an appropriate prior that considers intra- and extra-personal variations over the image pairs. This joint formulation is trained using a principled EM algorithm, while testing involves only efficient closed-formed computations that are suitable for real-time practical deployment. Supporting theoretical analyses investigate computational complexity, scale-invariance properties, and convergence issues. We also detail important relationships with existing algorithms, such as probabilistic linear discriminant analysis and metric learning. Finally, on extensive experimental evaluations, the proposed model is superior to the classical Bayesian face algorithm and many alternative state-of-the-art supervised approaches, achieving the best test accuracy on three challenging datasets, Labeled Face in Wild, Multi-PIE, and YouTube Faces, all with unparalleled computational efficiency 
650 4 |a Journal Article 
700 1 |a Cao, Xudong  |e verfasserin  |4 aut 
700 1 |a Wipf, David  |e verfasserin  |4 aut 
700 1 |a Wen, Fang  |e verfasserin  |4 aut 
700 1 |a Sun, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 1 vom: 25. Jan., Seite 32-46  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:1  |g day:25  |g month:01  |g pages:32-46 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 1  |b 25  |c 01  |h 32-46