Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming

We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and g...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 12 vom: 29. Dez., Seite 2515-2530
1. Verfasser: Turetken, Engin (VerfasserIn)
Weitere Verfasser: Benmansour, Fethallah, Andres, Bjoern, Glowacki, Przemyslaw, Pfister, Hanspeter, Fua, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM257614974
003 DE-627
005 20231224183218.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0858.xml 
035 |a (DE-627)NLM257614974 
035 |a (NLM)26891482 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Turetken, Engin  |e verfasserin  |4 aut 
245 1 0 |a Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.12.2017 
500 |a Date Revised 12.12.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities. We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs of neural arbors, and show that it outperforms state-of-the-art techniques 
650 4 |a Journal Article 
700 1 |a Benmansour, Fethallah  |e verfasserin  |4 aut 
700 1 |a Andres, Bjoern  |e verfasserin  |4 aut 
700 1 |a Glowacki, Przemyslaw  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 12 vom: 29. Dez., Seite 2515-2530  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:12  |g day:29  |g month:12  |g pages:2515-2530 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 12  |b 29  |c 12  |h 2515-2530