Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development
© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 211(2016), 1 vom: 17. Juli, Seite 194-207 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Arabidopsis thaliana NADH carbonic anhydrase (γCA) complex I mitochondrial metabolism respiratory chain ubiquinone oxidoreductase Arabidopsis Proteins gammaCAL1 protein, Arabidopsis mehr... |
Zusammenfassung: | © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. Complex I of the mitochondrial electron transport chain (mETC) in plants contains an extra domain that is made up from proteins homologous to prokaryotic gamma-carbonic anhydrases (γCA). This domain has been suggested to participate in complex I assembly or to support transport of mitochondrial CO2 to the chloroplast. Here, we generated mutants lacking CA1 and CA2 - two out of three CA proteins in Arabidopsis thaliana. Double mutants were characterized at the developmental and physiological levels. Furthermore, the composition and activity of the mETC were determined, and mutated CA versions were used for complementation assays. Embryo development of double mutants was strongly delayed and seed development stopped before maturation. Mutant plants could only be rescued on sucrose media, showed severe stress symptoms and never produced viable seeds. By contrast, callus cultures were only slightly affected in growth. Complex I was undetectable in the double mutants, but complex II and complex IV were upregulated concomitant with increased oxygen consumption in mitochondrial respiration. Ectopic expression of inactive CA variants was sufficient to complement the mutant phenotype. Data indicate that CA proteins are structurally required for complex I assembly and that reproductive development is dependent on the presence of complex I |
---|---|
Beschreibung: | Date Completed 30.01.2018 Date Revised 09.04.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.13886 |