The Semi-Variogram and Spectral Distortion Measures for Image Texture Retrieval

Semi-variogram estimators and distortion measures of signal spectra are utilized in this paper for image texture retrieval. On the use of the complete Brodatz database, most high retrieval rates are reportedly based on multiple features and the combinations of multiple algorithms, while the classifi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 4 vom: 28. Apr., Seite 1556-65
1. Verfasser: Pham, Tuan D (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM257571566
003 DE-627
005 20231224183124.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2526902  |2 doi 
028 5 2 |a pubmed24n0858.xml 
035 |a (DE-627)NLM257571566 
035 |a (NLM)26886989 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pham, Tuan D  |e verfasserin  |4 aut 
245 1 4 |a The Semi-Variogram and Spectral Distortion Measures for Image Texture Retrieval 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.07.2016 
500 |a Date Revised 26.02.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semi-variogram estimators and distortion measures of signal spectra are utilized in this paper for image texture retrieval. On the use of the complete Brodatz database, most high retrieval rates are reportedly based on multiple features and the combinations of multiple algorithms, while the classification using single features is still a challenge to the retrieval of diverse texture images. The semi-variogram, which is theoretically sound and the cornerstone of spatial statistics, has the characteristics shared between true randomness and complete determinism and, therefore, can be used as a useful tool for both the structural and statistical analysis of texture images. Meanwhile, spectral distortion measures derived from the theory of linear predictive coding provide a rigorously mathematical model for signal-based similarity matching and have been proven useful for many practical pattern classification systems. Experimental results obtained from testing the proposed approach using the complete Brodatz database, and the the University of Illinois at Urbana-Champaign texture database suggests the effectiveness of the proposed approach as a single-feature-based dissimilarity measure for real-time texture retrieval 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 4 vom: 28. Apr., Seite 1556-65  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:4  |g day:28  |g month:04  |g pages:1556-65 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2526902  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 4  |b 28  |c 04  |h 1556-65