Forecasting medical waste generation using short and extra short datasets : Case study of Lithuania

© The Author(s) 2016.

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 34(2016), 4 vom: 16. Apr., Seite 378-87
1. Verfasser: Karpušenkaitė, Aistė (VerfasserIn)
Weitere Verfasser: Ruzgas, Tomas, Denafas, Gintaras
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Forecasting generalised additives generation mathematical modelling medical waste smoothing splines Hazardous Waste Medical Waste
LEADER 01000caa a22002652c 4500
001 NLM25750317X
003 DE-627
005 20250219173624.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X16628977  |2 doi 
028 5 2 |a pubmed25n0858.xml 
035 |a (DE-627)NLM25750317X 
035 |a (NLM)26879908 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Karpušenkaitė, Aistė  |e verfasserin  |4 aut 
245 1 0 |a Forecasting medical waste generation using short and extra short datasets  |b Case study of Lithuania 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.12.2016 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2016. 
520 |a The aim of the study is to evaluate the performance of various mathematical modelling methods, while forecasting medical waste generation using Lithuania's annual medical waste data. Only recently has a hazardous waste collection system that includes medical waste been created and therefore the study access to gain large sets of relevant data for its research has been somewhat limited. According to data that was managed to be obtained, it was decided to develop three short and extra short datasets with 20, 10 and 6 observations. Spearman's correlation calculation showed that the influence of independent variables, such as visits at hospitals and other medical institutions, number of children in the region, number of beds in hospital and other medical institutions, average life expectancy and doctor's visits in that region are the most consistent and common in all three datasets. Tests on the performance of artificial neural networks, multiple linear regression, partial least squares, support vector machines and four non-parametric regression methods were conducted on the collected datasets. The best and most promising results were demonstrated by generalised additive (R(2) = 0.90455) in the regional data case, smoothing splines models (R(2) = 0.98584) in the long annual data case and multilayer feedforward artificial neural networks in the short annual data case (R(2) = 0.61103) 
650 4 |a Journal Article 
650 4 |a Forecasting 
650 4 |a generalised additives 
650 4 |a generation 
650 4 |a mathematical modelling 
650 4 |a medical waste 
650 4 |a smoothing splines 
650 7 |a Hazardous Waste  |2 NLM 
650 7 |a Medical Waste  |2 NLM 
700 1 |a Ruzgas, Tomas  |e verfasserin  |4 aut 
700 1 |a Denafas, Gintaras  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 34(2016), 4 vom: 16. Apr., Seite 378-87  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnas 
773 1 8 |g volume:34  |g year:2016  |g number:4  |g day:16  |g month:04  |g pages:378-87 
856 4 0 |u http://dx.doi.org/10.1177/0734242X16628977  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2016  |e 4  |b 16  |c 04  |h 378-87