Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation

Improved understanding of heterogeneous cellulose hydrolysis by cellulases is the basis for optimising enzymatic catalysis-based cellulosic biorefineries. A detailed mechanistic model is developed to describe the dynamic adsorption/desorption and synergistic chain-end scissions of cellulases (endogl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Biochemical engineering journal. - 1998. - 105(2016), Pt B vom: 15. Jan., Seite 455-472
1. Verfasser: Niu, Hongxing (VerfasserIn)
Weitere Verfasser: Shah, Nilay, Kontoravdi, Cleo
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Biochemical engineering journal
Schlagworte:Journal Article Cellulase Cellulose Kinetic parameters Modelling Optimisation Uncertainty
LEADER 01000caa a22002652 4500
001 NLM257369759
003 DE-627
005 20250219170854.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0857.xml 
035 |a (DE-627)NLM257369759 
035 |a (NLM)26865832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niu, Hongxing  |e verfasserin  |4 aut 
245 1 0 |a Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Improved understanding of heterogeneous cellulose hydrolysis by cellulases is the basis for optimising enzymatic catalysis-based cellulosic biorefineries. A detailed mechanistic model is developed to describe the dynamic adsorption/desorption and synergistic chain-end scissions of cellulases (endoglucanase, exoglucanase, and β-glucosidase) upon amorphous cellulose. The model can predict evolutions of the chain lengths of insoluble cellulose polymers and production of soluble sugars during hydrolysis. Simultaneously, a modelling framework for uncertainty analysis is built based on a quasi-Monte-Carlo method and global sensitivity analysis, which can systematically identify key parameters, help refine the model and improve its identifiability. The model, initially comprising 27 parameters, is found to be over-parameterized with structural and practical identification problems under usual operating conditions (low enzyme loadings). The parameter estimation problem is therefore mathematically ill posed. The framework allows us, on the one hand, to identify a subset of 13 crucial parameters, of which more accurate confidence intervals are estimated using a given experimental dataset, and, on the other hand, to overcome the identification problems. The model's predictive capability is checked against an independent set of experimental data. Finally, the optimal composition of cellulases cocktail is obtained by model-based optimisation both for enzymatic hydrolysis and for the process of simultaneous saccharification and fermentation 
650 4 |a Journal Article 
650 4 |a Cellulase 
650 4 |a Cellulose 
650 4 |a Kinetic parameters 
650 4 |a Modelling 
650 4 |a Optimisation 
650 4 |a Uncertainty 
700 1 |a Shah, Nilay  |e verfasserin  |4 aut 
700 1 |a Kontoravdi, Cleo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Biochemical engineering journal  |d 1998  |g 105(2016), Pt B vom: 15. Jan., Seite 455-472  |w (DE-627)NLM098270710  |x 1369-703X  |7 nnns 
773 1 8 |g volume:105  |g year:2016  |g number:Pt B  |g day:15  |g month:01  |g pages:455-472 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 105  |j 2016  |e Pt B  |b 15  |c 01  |h 455-472