MultiVCRank With Applications to Image Retrieval

In this paper, we propose and develop a multi-visual-concept ranking (MultiVCRank) scheme for image retrieval. The key idea is that an image can be represented by several visual concepts, and a hypergraph is built based on visual concepts as hyperedges, where each edge contains images as vertices to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 3 vom: 02. März, Seite 1396-409
1. Verfasser: Li, Xutao (VerfasserIn)
Weitere Verfasser: Ye, Yunming, Ng, Michael K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257215549
003 DE-627
005 20231224182329.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0857.xml 
035 |a (DE-627)NLM257215549 
035 |a (NLM)26849860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xutao  |e verfasserin  |4 aut 
245 1 0 |a MultiVCRank With Applications to Image Retrieval 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2016 
500 |a Date Revised 30.06.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose and develop a multi-visual-concept ranking (MultiVCRank) scheme for image retrieval. The key idea is that an image can be represented by several visual concepts, and a hypergraph is built based on visual concepts as hyperedges, where each edge contains images as vertices to share a specific visual concept. In the constructed hypergraph, the weight between two vertices in a hyperedge is incorporated, and it can be measured by their affinity in the corresponding visual concept. A ranking scheme is designed to compute the association scores of images and the relevance scores of visual concepts by employing input query vectors to handle image retrieval. In the scheme, the association and relevance scores are determined by an iterative method to solve limiting probabilities of a multi-dimensional Markov chain arising from the constructed hypergraph. The convergence analysis of the iteration method is studied and analyzed. Moreover, a learning algorithm is also proposed to set the parameters in the scheme, which makes it simple to use. Experimental results on the MSRC, Corel, and Caltech256 data sets have demonstrated the effectiveness of the proposed method. In the comparison, we find that the retrieval performance of MultiVCRank is substantially better than those of HypergraphRank, ManifoldRank, TOPHITS, and RankSVM 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ye, Yunming  |e verfasserin  |4 aut 
700 1 |a Ng, Michael K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 3 vom: 02. März, Seite 1396-409  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:3  |g day:02  |g month:03  |g pages:1396-409 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 3  |b 02  |c 03  |h 1396-409