Single-Image Super-Resolution Using Active-Sampling Gaussian Process Regression

As well known, Gaussian process regression (GPR) has been successfully applied to example learning-based image super-resolution (SR). Despite its effectiveness, the applicability of a GPR model is limited by its remarkably computational cost when a large number of examples are available to a learnin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 10. Feb., Seite 935-48
1. Verfasser: Wang, Haijun (VerfasserIn)
Weitere Verfasser: Gao, Xinbo, Zhang, Kaibing, Li, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257134328
003 DE-627
005 20231224182144.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2512104  |2 doi 
028 5 2 |a pubmed24n0857.xml 
035 |a (DE-627)NLM257134328 
035 |a (NLM)26841394 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Haijun  |e verfasserin  |4 aut 
245 1 0 |a Single-Image Super-Resolution Using Active-Sampling Gaussian Process Regression 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 19.05.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As well known, Gaussian process regression (GPR) has been successfully applied to example learning-based image super-resolution (SR). Despite its effectiveness, the applicability of a GPR model is limited by its remarkably computational cost when a large number of examples are available to a learning task. For this purpose, we alleviate this problem of the GPR-based SR and propose a novel example learning-based SR method, called active-sampling GPR (AGPR). The newly proposed approach employs an active learning strategy to heuristically select more informative samples for training the regression parameters of the GPR model, which shows significant improvement on computational efficiency while keeping higher quality of reconstructed image. Finally, we suggest an accelerating scheme to further reduce the time complexity of the proposed AGPR-based SR by using a pre-learned projection matrix. We objectively and subjectively demonstrate that the proposed method is superior to other competitors for producing much sharper edges and finer details 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
700 1 |a Zhang, Kaibing  |e verfasserin  |4 aut 
700 1 |a Li, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 2 vom: 10. Feb., Seite 935-48  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:2  |g day:10  |g month:02  |g pages:935-48 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2512104  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 2  |b 10  |c 02  |h 935-48