Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm

The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm-based relaxed convex problem usually leads to a suboptimal solution of the o...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 10. Feb., Seite 829-39
Auteur principal: Lu, Canyi (Auteur)
Autres auteurs: Tang, Jinhui, Yan, Shuicheng, Lin, Zhouchen
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't