Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm
The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm-based relaxed convex problem usually leads to a suboptimal solution of the o...
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 2 vom: 10. Feb., Seite 829-39 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2016
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Sujets: | Journal Article Research Support, Non-U.S. Gov't |
| Accès en ligne |
Volltext |