Median Robust Extended Local Binary Pattern for Texture Classification

Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a nove...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 3 vom: 01. März, Seite 1368-81
1. Verfasser: Liu, Li (VerfasserIn)
Weitere Verfasser: Lao, Songyang, Fieguth, Paul W, Guo, Yulan, Wang, Xiaogang, Pietikäinen, Matti
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM257021906
003 DE-627
005 20231224181920.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0856.xml 
035 |a (DE-627)NLM257021906 
035 |a (NLM)26829791 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Li  |e verfasserin  |4 aut 
245 1 0 |a Median Robust Extended Local Binary Pattern for Texture Classification 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2016 
500 |a Date Revised 21.03.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lao, Songyang  |e verfasserin  |4 aut 
700 1 |a Fieguth, Paul W  |e verfasserin  |4 aut 
700 1 |a Guo, Yulan  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Pietikäinen, Matti  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 3 vom: 01. März, Seite 1368-81  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:3  |g day:01  |g month:03  |g pages:1368-81 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 3  |b 01  |c 03  |h 1368-81