|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM257021906 |
003 |
DE-627 |
005 |
20231224181920.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0856.xml
|
035 |
|
|
|a (DE-627)NLM257021906
|
035 |
|
|
|a (NLM)26829791
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Li
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Median Robust Extended Local Binary Pattern for Texture Classification
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.07.2016
|
500 |
|
|
|a Date Revised 21.03.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Lao, Songyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fieguth, Paul W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Yulan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiaogang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pietikäinen, Matti
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 25(2016), 3 vom: 01. März, Seite 1368-81
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2016
|g number:3
|g day:01
|g month:03
|g pages:1368-81
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2016
|e 3
|b 01
|c 03
|h 1368-81
|