Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution

Local learning of sparse image models has proved to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 3 vom: 01. März, Seite 1354-67
1. Verfasser: Ferreira, Julio Cesar (VerfasserIn)
Weitere Verfasser: Vural, Elif, Guillemot, Christine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM257021884
003 DE-627
005 20250219155741.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0856.xml 
035 |a (DE-627)NLM257021884 
035 |a (NLM)26829789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ferreira, Julio Cesar  |e verfasserin  |4 aut 
245 1 0 |a Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2016 
500 |a Date Revised 30.06.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Local learning of sparse image models has proved to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we consider the underlying geometry of the data. The first algorithm, called adaptive geometry-driven nearest neighbor search (AGNN), is an adaptive scheme, which can be seen as an out-of-sample extension of the replicator graph clustering method for local model learning. The second method, called geometry-driven overlapping clusters (GOCs), is a less complex nonadaptive alternative for training subset selection. The proposed AGNN and GOC methods are evaluated in image superresolution and shown to outperform spectral clustering, soft clustering, and geodesic distance-based subset selection in most settings 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Vural, Elif  |e verfasserin  |4 aut 
700 1 |a Guillemot, Christine  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 3 vom: 01. März, Seite 1354-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:3  |g day:01  |g month:03  |g pages:1354-67 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 3  |b 01  |c 03  |h 1354-67