Person Re-Identification by Discriminative Selection in Video Ranking

Current person re-identification (ReID) methods typically rely on single-frame imagery features, whilst ignoring space-time information from image sequences often available in the practical surveillance scenarios. Single-frame (single-shot) based visual appearance matching is inherently limited for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 12 vom: 01. Dez., Seite 2501-2514
1. Verfasser: Wang, Taiqing (VerfasserIn)
Weitere Verfasser: Gong, Shaogang, Zhu, Xiatian, Wang, Shengjin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM257021787
003 DE-627
005 20231224181920.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0856.xml 
035 |a (DE-627)NLM257021787 
035 |a (NLM)26829777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Taiqing  |e verfasserin  |4 aut 
245 1 0 |a Person Re-Identification by Discriminative Selection in Video Ranking 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.01.2018 
500 |a Date Revised 16.01.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Current person re-identification (ReID) methods typically rely on single-frame imagery features, whilst ignoring space-time information from image sequences often available in the practical surveillance scenarios. Single-frame (single-shot) based visual appearance matching is inherently limited for person ReID in public spaces due to the challenging visual ambiguity and uncertainty arising from non-overlapping camera views where viewing condition changes can cause significant people appearance variations. In this work, we present a novel model to automatically select the most discriminative video fragments from noisy/incomplete image sequences of people from which reliable space-time and appearance features can be computed, whilst simultaneously learning a video ranking function for person ReID. Using the PRID 2011, iLIDS-VID, and HDA+ image sequence datasets, we extensively conducted comparative evaluations to demonstrate the advantages of the proposed model over contemporary gait recognition, holistic image sequence matching and state-of-the-art single-/multi-shot ReID methods 
650 4 |a Journal Article 
700 1 |a Gong, Shaogang  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiatian  |e verfasserin  |4 aut 
700 1 |a Wang, Shengjin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 12 vom: 01. Dez., Seite 2501-2514  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:12  |g day:01  |g month:12  |g pages:2501-2514 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 12  |b 01  |c 12  |h 2501-2514