Learning to Diffuse : A New Perspective to Design PDEs for Visual Analysis

Partial differential equations (PDEs) have been used to formulate image processing for several decades. Generally, a PDE system consists of two components: the governing equation and the boundary condition. In most previous work, both of them are generally designed by people using mathematical skill...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 12 vom: 01. Dez., Seite 2457-2471
1. Verfasser: Liu, Risheng (VerfasserIn)
Weitere Verfasser: Zhong, Guangyu, Cao, Junjie, Lin, Zhouchen, Shan, Shiguang, Luo, Zhongxuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM257021760
003 DE-627
005 20250219155740.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0856.xml 
035 |a (DE-627)NLM257021760 
035 |a (NLM)26829775 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Risheng  |e verfasserin  |4 aut 
245 1 0 |a Learning to Diffuse  |b A New Perspective to Design PDEs for Visual Analysis 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.06.2017 
500 |a Date Revised 12.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Partial differential equations (PDEs) have been used to formulate image processing for several decades. Generally, a PDE system consists of two components: the governing equation and the boundary condition. In most previous work, both of them are generally designed by people using mathematical skills. However, in real world visual analysis tasks, such predefined and fixed-form PDEs may not be able to describe the complex structure of the visual data. More importantly, it is hard to incorporate the labeling information and the discriminative distribution priors into these PDEs. To address above issues, we propose a new PDE framework, named learning to diffuse (LTD), to adaptively design the governing equation and the boundary condition of a diffusion PDE system for various vision tasks on different types of visual data. To our best knowledge, the problems considered in this paper (i.e., saliency detection and object tracking) have never been addressed by PDE models before. Experimental results on various challenging benchmark databases show the superiority of LTD against existing state-of-the-art methods for all the tested visual analysis tasks 
650 4 |a Journal Article 
700 1 |a Zhong, Guangyu  |e verfasserin  |4 aut 
700 1 |a Cao, Junjie  |e verfasserin  |4 aut 
700 1 |a Lin, Zhouchen  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Luo, Zhongxuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 12 vom: 01. Dez., Seite 2457-2471  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:12  |g day:01  |g month:12  |g pages:2457-2471 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 12  |b 01  |c 12  |h 2457-2471